Elec 528 – Programming Exercise #2

Due: 2/3/2003

Create Phase 3 of the forwarding code, which will forward packets by looking the Ethernet Destination Address up in a hash table. The Forwarding Table will be provided in the TCL script l2load.tcl, and a new version of main.tcl which loads this table into main memory will also be provided. The per channel packet counters and the total packet counter from Phase 2 should be preserved, but the forwarding function from Phase2 will be replaced by the table lookup.

The example code for Phase3 (project.asm) includes comments which describe the Forwarding Table structure. Each 32-byte entry is in the format shown below.

	
	Bit Positions

	Word
	31
	
	24
	23
	17
	16
	15
	13
	7
	6
	5
	4
	3
	2
	1
	0

	0
	Link Pointer
	0
	0
	0
	F
	I

	1
	Zeroes
	E
	MAC Address [47:32]

	2
	MAC Address [31:0]

	3
	Update Time (not used in this Assignment)

	4
	Zeroes
	POM
	0
	0
	Channel

	5
	Not Used in this Assignment

	6
	Pointer Base
	Fwd Ptr Offset
	Zeroes

	7
	Pointer Base
	Rev Ptr Offset
	Zeroes

The Table begins at address 0x10000 in Main (RDRAM) memory (#define DRAM_BASE). For each packet, the Ethernet Destination MAC address is looked up in the table. If there is an entry which contains the exact 48-bit MAC address in words 1 and 2, the packet is forwarded to the POM and Channel specified in word 4.

If there is not a matching entry, the packet is forwarded to POM 3, Channel 7 which emulates broadcasting the packet to all ports. The Local Memory location BROADCAST (0x1004) should be incremented.

If the Destination POM and Channel are the same as those on which the packet arrived, is should be sent to POM 3, Channel 6 which emulates dropping the packet. The Local Memory location DISCARD (0x1008) should be incremented.

The fields in the above table are used as follows:

Link Pointer – the main memory address of the next entry in this hash chain.

F(irst) – this bit is a one if this entry is the first one in its hash chain, and a zero otherwise. This field is not used in this exercise.

I(nvalid Link) – this bit is a one if there are no further entries in this hash chain, and zero otherwise.

E(mpty) – this bit is a one if there is not a valid entry at this location, and zero otherwise.

MAC Address – the MAC Destination Address whose forwarding information is contained in this entry.

POM – the POM to which packets should be forwarded.

Channel – the Channel to which packets should be forwarded.

Forward Pointer Offset – the forward pointer in the doubly linked empty list.

Reverse Pointer Offset – the reverse pointer in the doubly linked empty list.

Pointer Base – the upper part of the table base address, so that the pointer entries point directly to the selected entry.

Since there are 256 entries, the MAC address must be hashed to eight bits. This is accomplished by XORing all six bytes of the address.

Learning Subroutines

In addition to the above function, implement the following three subroutines. They will be essential for the Learning code in the next exercise. Please use the routine and parameters used in my /Elec528/Phase3/project.asm, which contains template comments for these routines (which are also copied below) at the very end.

Initially, all 256 entries are held in an empty list. All pointers referenced below are offsets from the start of the table (0x10000) divided by 32, and thus are values 0 to 256. Location 0000 in SRAM (EMPTYHD) at address 0x15000000 (SRAMBASE) holds a pointer to the head of the Empty list (initially 0). In each location the Forward Pointer points to the next empty entry in the list. The last entry has the value 256. In each entry the Reverse Pointer points to the previous entry in the list, and the first entry has the value 256.

These three routines assist in managing the free list. GETFREEENTRY is called when a free entry is required, and it gets the first entry from the list, returns a pointer to it in r6_FREEADDR and relinks the list. PUTFREEENTRY performs the reciprocal function of returning an entry to the free list, with the address of the entry to be returned supplied in r6_FREEADDR. UNLINKENTRY is used when a specific entry on the free list is needed. Since this entry may be anywhere in the list, r6_FREEADDR is supplied as a pointer to the entry and the routine relinks the list around that entry.

//

//

// Subroutine to get the first free list entry

//

// The address of this entry will be returned in r6_FREEADDR, and the list

// will be reconnected.

//

// The ??? registers are overwritten by this routine.

//

//

GETFREEENTRY:

//

//

// Subroutine to return an entry to the free list

//

// The address of the entry will be supplied in r6_FREEADDR, and the list

// will be reconnected.

//

// The ??? registers are overwritten by this routine.

//

//

PUTFREEENTRY:

//

//

// Subroutine to remove a selected entry from the middle of the free list

//

// The address of the entry will be supplied in r6_FREEADDR, and the list

// will be reconnected.

//

// The ??? registers are overwritten by this routine.

//

//

UNLINKENTRY:

